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Abstract

The increasing use of dynamic fundraising schemes such as crowdfunding has given rise to

a relatively small but growing body of literature focusing on understanding the effectiveness

of such techniques. In this paper, we first present a simple model of dynamic fundraising

as a sequential-move threshold public goods game. We demonstrate that donors have an

incentive to free-ride on expected future contributions, which leads to the following testable

hypotheses for our empirical analysis: Donations are, all else equal, decreasing in accumu-

lated past donations and increasing in time from the beginning of fundraising. We analyze

a rich dataset from a prominent crowdfunding platform and find evidence that supports our

hypotheses and shows the presence of a small but statistically significant forward-looking

crowd-out among donors. On average, a one-percentage-point increase in past cumulative

donations leads to a reduction of 0.05 percentage points in the amount contributed, while

a one-percentage-point increase in time passed results in an increase of 0.03 percentage

points in the amount contributed. In short, we observe that an increased prospect of future

provision crowds out earlier contributions.
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1 Introduction

Traditional fundraising techniques often entail soliciting potential donors without revealing

much about previous donations or the fundraising timeline. Thus, the resulting environment is,

in effect, a static public good game between donors who simultaneously choose their donation

size. However, in recent years, some fundraisers have adopted new methods, such as crowdfund-

ing, that include sequential solicitation, where donors observe past contributions before deciding

on their own donations. Such techniques change the donation game to a dynamic sequential

move one that, based on classic fundraising theory, should exacerbate the free-rider problem and

lead to less giving compared to simultaneous move settings (Varian, 1994). However, despite

this potential for free-riding, also known as giving crowd-out in the charitable giving literature,

crowdfunding, and other dynamic fundraising techniques are becoming more prevalent, which

mandates further scientific inquiry into their effectiveness. In this paper, we first theoretically

demonstrate that in a sequential move threshold public goods game, free-riding takes a forward-

looking form, such that donors’ giving decisions are driven by their expectations of future giving.

We then present an empirical test for the presence of crowd-out in a dynamic fundraising envi-

ronment using rich observational data. We find evidence supporting the notation that expected

future donations crowd out earlier donations.

The focus of our research is crowdfunding, which is an increasingly popular dynamic

fundraising tool and provides a great setting to observe donor behavior and test for crowd-out

in a dynamic contribution game. We use a rich crowdfunding dataset from DonorsChoose.org1

to test our hypotheses of crowd-out behavior. In DonorsChoose.org, donors can choose to donate

to any of the posted projects that have a publicly observable requested amount (determined

by the fundraiser) and expiration date (four months from the project’s public posting date).

Moreover, each donor can observe the sum of past contributions before deciding how much to

give. In the end, a project receives the sum of contributions only if their total amount reaches

the requested amount before the expiration date. Thus, each project is a threshold public good

that is funded by sequentially moving donors and, as such, is susceptible to crowd-out behavior.

We develop a simple theoretical model of donor behavior in a crowdfunding platform

to formally demonstrate that under sequential giving, donors have the propensity to free-ride

on expected upcoming donations when they are likely to occur. The intuition for this form of

forward-looking crowd-out behavior is that a potential donor can infer the probability of future

donors providing the public good (funding the project up to the threshold) from the cumulative

past giving and time left to the project’s expiration. In particular, when a given donor observes

1DonorsChoose.org.org is an online crowdfunding platform extensively used by public school teachers across

the USA to raise money for their classrooms by posting various projects. Given the scope and broad use of

DonorsChoose.org among low-income communities, DonorsChoose.org is referred to as “the PTA Equalizer”

(Rivero, 2018). Moreover, this platform has the criteria the National School Board Association sets for best-

in-class crowdfunding sites, such as financial transparency and accountability, privacy and safety, and integrity

controls. For more details, see: https://help.donorschoose.org/hc/en-us/articles/360002942094-Resources-for-

School-Board-Members.
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high past contributions and/or a lot of time left to expiration, she infers a high probability that

the public good will be provided by future donors, which reduces the donor’s giving incentives.

In contrast, observing a project with little accumulated donations and/or nearing its expiration

date implies that the project is not very likely to reach its fundraising goal in time by future

donations, which in turn, increases the giving motives of the donor in question. This theoretical

finding provides two main testable hypotheses: A donor’s giving is, all else equal, decreasing in

accumulated past donations and increasing in time from the beginning of fundraising.

We estimate the effects of cumulative past donations and time elapsed from project post-

ing on the size of each donor’s contribution. Our identification strategy takes advantage of the

fact that donors would be unaware of the time left and accumulated donations prior to browsing

the website; hence, these variables are exogenous to any arriving donors’ characteristics. We

find evidence supporting the hypotheses that cumulative past donations have a negative effect

on donation size and that time passed from a project posted date has a positive effect. These

results indicate that expected future donations crowd out earlier donations. In particular, a

one percentage point increase in past collected contributions (relative to the project provision

threshold) leads to a reduction of 0.05 percentage points in the amount contributed on average.

More interestingly, a one percentage point increase in time passed (relative to the total project

posting period) will increase the amount contributed by 0.03 percentage points (relative to the

project provision threshold).

Our results are robust to various specifications, such as controlling for the urgency of a

project, the requested amount, the type of project specified by a teacher, and the number of

donations by a donor. However, when we drop the first donations (due to their peculiarity)

from our dataset, the statistical significance of the impact of total accumulated past donations

on donation size diminishes. In other words, while later donations are much smaller than the

initial donation, there is no evidence of a further decrease in donation size as cumulative past

donations grow. Nevertheless, the positive response of donation size to the time passed since

the project’s posting date persists in the absence of initial donations. This evidence supports

the presence of forward-looking free-riding or crowd-out in crowdfunding platforms.

Our study adds to the literature on dynamic fundraising and public good provision.

Cornes and Sandler (1996) provide one of the earliest comprehensive reviews of the classical

theory of public goods and a detailed analysis of dynamic models. Marx and Matthews (2000)

characterize the equilibria of a dynamic voluntary contribution threshold public good game, and

establish the conditions that lead to full provision. Based on the theory developed by Marx and

Matthews (2000), Duffy et al. (2007) investigate dynamic public good provision in a laboratory

experiment and find contributions to be larger in the dynamic multiple-round game relative

to the static game. Using a lab-in-the-field experiment, Ansink et al. (2017) examine various

crowdfunding designs and demonstrate the importance of signals to mitigate cheap-riding and

coordination failure.2

2According to Ansink et al. (2017) cheap-riding occurs whenever agents contribute to the public good but

try to reach an outcome where their own relative contribution is low.
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We also contribute to the growing literature on the application of crowdfunding to char-

itable fundraising. While the use of crowdfunding in entrepreneurship has been studied exten-

sively, crowdfunding for charitable causes is more recent and, due to its unique characteristics,

requires specific scholarly attention that is developing into a distinct strand of literature.3 Meer

(2014, 2017) empirically investigates the price elasticity of giving, competition, and substitution

between causes in crowdfunding. Corazzini et al. (2015) study crowdfunding in a lab experiment

and find that the presence of multiple public goods decreases coordination and total contribu-

tions. In another empirical research, Wu et al. (2020) find evidence of a negative relationship

between the cumulative amount of donations and subsequent individual donation size that is

consistent with our free-riding and crowd-out results. There are also a number of studies that

focus on various giving motives and other factors influencing donor behavior in crowdfunding,

such as goal gradient helping4(Cryder et al., 2013), peer effects (Smith et al., 2015), the im-

portance of early days of a fundraising campaign (Beier and Wagner, 2016), the role of charity

outcomes and interaction (Gleasure and Feller, 2016), default giving options (Altmann et al.,

2019), conformity to the majority gift size (Sasaki, 2019), and completion effect5 (Argo et al.,

2020; Wash, 2021). Lastly, it is worth noting that this literature includes studies on charitable

crowdfunding in the context of public policy, such as the crowd-out effects of school spending on

crowdfunding (Meer and Tajali, 2021) and higher education funding (Horta et al., 2022), and

the impact of charitable crowdfunding on educational outcomes (Keppler, Li, and Wu, 2022).

Our work is also related to the literature on charitable giving motives. Why people

give to charities has been a long-standing subject of inquiry among economists (Vesterlund,

2006; Andreoni and Payne, 2013). The broadest distinction in the economics literature has

traditionally been between pure altruism (utility from the provision of the public good) and

various other-regarding motives (gaining utility from the act of giving). In the classic models

that assume pure altruism, donors are expected to free-ride on early donations (Varian, 1994).

However, Vesterlund (2003), Andreoni (2006), Krasteva and Saboury (2021) show that under

information asymmetry about the quality of the public good, purely altruistic donors infer

quality from the size of lead donor’s gift and, as a result, contribute more when a large leadership

gift is observed. Other-regarding motives can be divided into the warm-glow of giving (Andreoni,

1988, 1989, 1990) that depends only on the size of one’s donation, and social motives that stem

from considering how one’s gift compares to others’ contributions (Bénabou and Tirole, 2006;

Vesterlund, 2016). While warm-glow does not induce any response to giving by others, social

motives lead to conditional cooperation, i.e., responding positively to others’ contributions.

Researchers have used laboratory or field experiments to investigate these motives, such as Fehr

3For instance, Boudreau et al. (2015) study the role of various motives in mitigating the free-rider problem

in entrepreneurial crowdfunding. Strausz (2017) explain the emergence of entrepreneurial crowdfunding through

the lens of mechanism design as an innovation to alleviate moral hazard under demand uncertainty. In a recent

study by Deb et al. (2019), they design a reward-based crowdfunding model for a private good and empirically

examine the dynamic interactions between buyers and donors using data collected from Kickstarter. Alegre and

Moleskis (2021) and van Teunenbroek et al. (2023) provide systematic reviews of this literature.
4Donors contribute a larger amount in the last stage of a fundraising campaign.
5Donors contributing more to reach their personal fundraising targets.
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and Schmidt (1999); Bolton and Ockenfels (2000); Charness and Rabin (2002); Ariely et al.

(2009); Konow (2010); Gneezy et al. (2012, 2014); Cooper and Kagel (2016); Ottoni-Wilhelm

et al. (2017) to name a few.6

This article proceeds as follows: in Section 2, we discuss our theoretical model and the

implied testable hypotheses. We then describe the data and lay out our empirical strategy in

Section 3, which is followed by the results and robustness checks in Sections 4 and 5. Section 6

concludes.

2 Theory

In this section, we introduce a partial equilibrium model of an individual donor’s giving behavior

in a crowdfunding platform. We model the behavior of a donor who visits DonorsChoose.org

to make a donation but is not particularly familiar with any specific project, and has no prior

knowledge of any project’s timeline. While it is not very likely that such a donor chooses a

project randomly, it is plausible to assume that whatever project they choose, their visit time is

exogenous to the chosen project’s characteristics and timeline. Moreover, it is also reasonable to

assume that donors’ preferences are diverse, and any project has its fair share of potential donors

who may choose to visit DonorsChoose.org at any point in time. Thus, from the viewpoint of

any given project, there are some interested donors out there, who visit the project’s page at a

pace that is, effectively, as good as random.

Furthermore, for the purpose of mathematical tractability, we assume a discrete timeline

where in each discrete piece of the fundraising period, a maximum of one donor may randomly

show up with a publicly known probability. In other words, we have assumed a partition of the

fundraising period into a finite number of short periods where each has a publicly known chance

of being occupied by a donor. While this assumption is not entirely realistic, it approximates a

continuous crowdfunding game closely enough for the purpose of our analysis.

Lastly, we only analyze the behavior of the last 3 donors and use the results as the

theoretical grounds for our empirical hypotheses. Our reasoning is that while the logic is

extendable to earlier donors, finding a closed-form solution for the giving behavior of earlier

donors is mathematically complex and beyond the scope of this paper. Therefore, we leave the

analysis of the full model to future research.

2.1 Model

Fundraising for a threshold public good occurs over a finite length of time that starts at time

zero and ends at time T . The length of time is divided into t̄ periods, such that period t starts

6Gee and Meer (2020) explore whether increasing donations to one non-profit organization affects donations

to others, questioning if the altruism budget is fixed or flexible.
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at time
(t− 1)T

t̄
and ends at time

tT

t̄
. During each time period, a maximum of one potential

donor may arrive. The probability of a donor arriving during each period is ν ∈ (0, 1) that is

fixed and publicly known, and otherwise, there will be no donor during that period. Thus, the

number of actual donors that arrive over the whole fundraising timeline can be any integer from

0 to t̄. Let gt represent the contribution in time period t ∈ {1, 2, 3, ..., t̄}.7 The public good will

be provided if the sum of all donations G =
∑t̄

t=0 g
t is no less than a threshold G0, and each

donor i’s utility will depend on their own contribution gi and total contribution G as follows:

ui = 1G≥G0 [vi(wi − gi) + Vi] + 1G<G0vi(wi) (1)

In the following subsections, we will use backward induction to find the equilibrium

behavior of the last 3 donors, given the behavior of past donors and the number of potential

donors that are expected to arrive.

2.2 Last Donor’s Contribution

Consider donor i that arrives in the last time period t̄, and let g−i =
∑t̄−1

t=1 g
t represent what

has already been contributed by previous donors. Furthermore, let’s focus on the case where

g−i < G0.
8 Donor i compares the payoff of contributing G0−g−i and providing the public good

to that of no contribution and does the former if the following holds:

Vi ≥ vi(wi)− vi(wi −G0 + g−i) (2)

Inequality (2) simply states that the last donor will donate G0 − g−i, and provide the

public good if her valuation of the public good is higher than the utility cost of covering the

gap until the provision threshold G0.

2.3 The Impact of Cumulative Past Donations

Consider donor i that arrives in the time period t̄ − 1, and let g−i =
∑t̄−2

t=1 g
t represent what

has already been contributed by previous donors. Furthermore, let’s focus on the case where

g−i < G0.
9 Donor i, expects another donor j (as discussed in Section 2.2) to arrive in the

last period with probability ν. Moreover, conditional on donor j’s arrival, she will contribute

G0 − g−j = G0 − g−i − gi if Inequality (2) holds for her, the probability of which depends on

the distribution of donor types. Let’s denote the latter probability as follows:

p(g−j , t̄) = Prob(Vj ≥ vj(wj)− vj(wj −G0 + g−j)) (3)

7If no donor shows up in a given period t, then gt = 0.
8The other case is trivial.
9The other case is trivial.
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Since g−j = g−i + gi, donor i’s expected utility in period t̄− 1 will be:

E(ui(gi, g−i)|t̄− 1) =

vi(wi) + νp(g−i + gi, t̄)[Vi − vi(wi) + vi(wi − gi)] if gi < G0 − g−i

vi(wi − gi) + Vi if gi ≥ G0 − g−i

(4)

Donor i will never give more than G0 − g−i as giving any higher amount reduces their

utility of wealth without changing the level of the public good. Giving G0−g−i leads to a utility

of vi(wi −G0 + g−i) + Vi that donor i compares to the expected utility of giving g∗i (g−i, t̄− 1)

that satisfies the following first order condition:

p1(g−i + g∗i (g−i, t̄− 1), t̄)

p(g−i + g∗i (g−i, t̄− 1), t̄)
=

v′i(wi − g∗i (g−i, t̄− 1))

Vi − vi(wi) + vi(wi − g∗i (g−i, t̄− 1))
(5)

g∗i (g−i, t̄ − 1) is the gift where donor i balances the trade-off between increasing the

probability of provision by giving more and increasing the net benefit of provision by giving

less.10 More intuitively, the donor is weighing whether to support the provision of the public

good or free-ride on the expected subsequent donor’s willingness to provide the public good.

Donor i donates g∗i (g−i, t̄− 1) if and only if the following holds:11

vi(wi) + νp(g−i + g∗i (g−i, t̄− 1), t̄)[Vi − vi(wi) + vi(wi − g∗i (g−i, t̄− 1))] ≥ vi(wi −G0 + g−i) + Vi

Otherwise, she gives G0 − g−i that is the whole contribution gap needed to provide the public

good. Since vi() is an increasing and concave function, it follows that the right-hand-side of

Equation (5) is increasing in g∗i (g−i, t̄− 1). Thus, the following proposition holds:

Proposition 1 If and only if
p1(., t̄)

p(., t̄)
is non-increasing in its argument, i.e., ln(p(., t̄)) is a

concave function, g∗i (g−i, t̄− 1) is decreasing in g−j.

Proposition 1 states that as long as donor j does not switch to a corner solution, her gift

will be decreasing in cumulative past donations for a large set of distributions of donor wealth

and preferences. Thus, the following testable hypothesis is implied:

Hypothesis 1 Donations that do not reach the provision threshold of the public good are de-

creasing in the sum of past donations.

Rejection of hypothesis 1 implies that either ln(p(., t̄)) is strictly convex or the pure altruistic

donor utility model does not fully capture donors’ preferences.12

10In more technical terms, at g∗i (g−i, t̄−1) the donor optimizes her giving where the provision probability and

the net benefit are equally sensitive to the marginal gift.
11The left-hand-side is the expected utility of giving g∗i (g−i, t̄− 1).
12While the term altruism has been used in various senses, we follow the standard terminology in charitable

giving theory, e.g., Ottoni-Wilhelm et al. (2017).
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The full picture of donor i’s behavior is not limited to the interior solution g∗i (g−i, t̄− 1),

and includes the case where her optimal choice is the corner solution, i.e., contributing G0−g−i.

Interestingly, while g∗i (g−i, t̄− 1) is decreasing in g−i, donor i becomes more likely to switch to

a corner solution as g−i grows.
13 The following proposition formalizes this argument:

Proposition 2 There exists ḡi(t̄− 1) such that for any g−i ≥ ḡi(t̄− 1), donor i will contribute

G0 − g−i in period t̄− 1.

Proposition 2 implies that the probability of a corner solution is increasing in cumulative

past donations, which leads to the following testable hypothesis:

Hypothesis 2 The probability of a donor giving the full amount left to the provision threshold

is increasing in the sum of past donations.

2.4 The Impact of Time

Consider donor i that arrives in the time period t̄ − 2, and let g−i =
∑t̄−3

t=1 g
t represent past

donations. Furthermore, as before, we focus on the case where g−i < G0.
14 Donor i expects two

other donors j and k to arrive, each with probability ν, in the remaining two periods. These

subsequent donors are expected to behave as discussed in Sections 2.2 and 2.3. Therefore, donor

i’s expected utility can be written as:

E(ui(gi, g−i)|t̄− 2) =

vi(wi) + νp(g−i + gi, t̄− 1)[Vi − vi(wi) + vi(wi − gi)] if gi < G0 − g−i

vi(wi − gi) + Vi if gi ≥ G0 − g−i

(6)

where p(., t̄− 1) is the expected probability of public good provision on or after period t̄− 1 as

a function of cumulative contributions, conditional on a final donor’s arrival:

p(g−j , t̄−1) = Prob(g−j ≥ ḡj(t̄−1))+νE
(
p(g−j + g∗j (g−j , t̄− 1), t̄)|g−j < ḡj(t̄− 1)

)
+(1−ν)p(g−j , t̄)

(7)

As in Subsection 2.3, donor i will never give more than G0 − g−i. Moreover, donor i

compares the corner solution to the optimal interior solution g∗i (g−i, t̄ − 2) that satisfies the

following first order condition:

p1(g−i + g∗i (g−i, t̄− 2), t̄− 1)

p(g−i + g∗i (g−i, t̄− 2), t̄− 1)
=

v′i(wi − g∗i (g−i, t̄− 2))

Vi − vi(wi) + vi(wi − g∗i (g−i, t̄− 2))
(8)

13The reason is that as g−i increases, g−j = g−i + g∗i (g−i, t̄− 1) converges to G0. Therefore, there is not much

left for the last donor j to contribute. Thus, p(g−j , t̄) converges to 1, and donor i’s expected utility of donating

g∗i (g−i, t̄−1) converges to (1−ν)vi(wi)+ν[Vi+vi(wi−g∗i (g−i, t̄−1))]. However, the utility of donating G0−g−i

converges to Vi+vi(wi− g∗i (g−i, t̄−1)) that is strictly higher. Therefore, above a high enough level of g−i, donor

i finds it worthwhile to donate G0 − g−i and provide the public good for sure (corner solution).
14The other case is trivial.
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Analogously to the case analyzed in Section 2.3, the right-hand side of Equation (8)

increases in g∗i (g−i, t̄ − 2), and Proposition 1 would extend to this period. Furthermore, by

the same logic explained in Section 2.3, donor i becomes more likely to contribute G0 − g−i

(corner solution) at higher levels of g−i. Hence, Proposition 2 would also extend to period t̄−2.

Therefore, at first glance, the behavior of donor i looks very similar in periods t̄− 1 and t̄− 2.

However, a closer examination of Equations (3) and (7) reveals that for a given level of past

giving and donor contribution, the provision probability is higher in the earlier period:

p(g−i + gi, t̄− 1) > p(g−i + gi, t̄) (9)

This result is intuitive, as earlier in the timeline, more subsequent donors are expected to show

up and contribute to the public good leading to a higher provision probability that increases

the current donor’s incentives to free-ride on expected future donations. As a result, comparing

Equations (5) and (8) reveals that for a given level of past donations, g∗i (g−i, t̄−2) < g∗i (g−i, t̄−1),

which is formalized in the following proposition:15

Proposition 3 For a given level of past contributions, the optimal interior gift is increasing in

time, i.e., ∀g−i < Go g∗i (g−i, t̄− 2) < g∗i (g−i, t̄− 1).

Proposition 3 states that as long as donor j does not switch to a corner solution, her gift

will be increasing in time, which implies the following testable:

Hypothesis 3 For a given level of past donations, the size of donations that have not reached

the provision threshold is increasing in time.

Rejection of hypothesis 3 implies that the pure altruistic donor utility model does not fully

capture donors’ preferences.

Turning to the corner solution, Proposition 2 extends to period t̄− 2 analogously. Thus,

there exists ḡi(t̄ − 2) such that for any g−i ≥ ḡi(t̄ − 2), donor i prefers contributing G0 − g−i

to giving g∗i (g−i, t̄ − 2). It can be established that ḡi(t̄ − 2) > ḡi(t̄ − 1).16 This result can be

summarized in the following proposition:

Proposition 4 The full provision threshold ḡi(t) is decreasing in t, i.e., ḡi(t̄− 2) > ḡi(t̄− 1)

Proposition 4 implies that the probability of a corner solution is increasing in time, which

leads to the following testable hypothesis:

15Since both probabilities p(., t̄ − 1) and p(., t̄) converge to 1 as their first argument (total contributions)

approaches G0, Inequality (9) implies p1(g−i + gi, t̄− 1) < p1(g−i + gi, t̄).
16The logic is as follows. Donor i prefers contributing G0−g−i to giving g∗i (g−i, t̄−2), i.e., ui(G0−g−i, g−i) >

E(ui(g
∗
i (g−i, t̄ − 2), g−i)|t̄ − 2). Consider g−i ≥ ḡi(t̄ − 2). From Equation (9), p(g−i + g∗i (g−i, t̄ − 1), t̄) <

p(g−i + g∗i (g−i, t̄ − 1), t̄ − 1). Therefore, E(ui(g
∗
i (g−i, t̄ − 1), g−i)|t̄ − 1) < E(ui(g

∗
i (g−i, t̄ − 1), g−i)|t̄ − 2) <

E(ui(g
∗
i (g−i, t̄ − 2), g−i)|t̄ − 2) < ui(G0 − g−i, g−i) which implies that if donor i prefers the corner solution in

period t̄− 2, they must prefer it in period t̄− 1 for the same level of past contributions.
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Hypothesis 4 For a given level of past donations, the probability of full provision of the public

good is increasing in time.

In short, as the fundraising deadline approaches, all else equal, donors give more and

are more likely to fully provide the public good. The intuitive explanation is that earlier in the

timeline, a donor expects more future donors to show up. Thus, the donor has an incentive to

free-ride on expected future donations.

2.5 Other Giving Motives

Our model’s main assumption is that each individual donor is purely altruistic, i.e., she enjoys

the public good regardless of who provides it and independent of the size of her own contribution.

This assumption is the main driver of our results that can be summarized as: expected future

donations crowd out today’s giving. Therefore, the rejection of the 4 hypotheses stated in the

previous sections would imply that donors’ giving behavior is not, at least primarily, governed

by pure altruism.

Warm glow is arguably the earliest established other-regarding giving motive that as-

cribes giving to the “joy of giving.”(Andreoni, 1988, 1989, 1990) Warm glow is the utility one

gets from their own gift irrespective of other donors’ behavior, which reduces a donor’s incen-

tive to change their donation in response to past or potential future giving by others. Thus,

it follows that as warm glow motives strengthen, g∗i (g−i, t) becomes less sensitive to changes in

g−i and t.

There is also evidence of various giving motives that lead to “conditional cooperation,”

such as social norm compliance, social pressure, peer pressure, moral obligation, reciprocity,

inequality aversion, and self-image concerns. In the presence of any of these motives, a donor

incurs some disutility from donating below what she believes to be the acceptable gift size, which

is determined based on her perception of others’ donations. In the context of our crowdfunding

model, expected cumulative past giving per past donor for the period t can be calculated as
g−i

ν(t−1) that a donor would gravitate towards with any of the giving motives just described. As a

result, with strong enough conditional cooperation motives, g∗i (g−i, t) would become increasing

in g−i and decreasing in t.

Lastly, strategic “quality signaling” has also been established as a determinant of giving

behavior when donors’ giving is observable by subsequent donors. (Vesterlund, 2003; Andreoni,

2006; Krasteva and Saboury, 2021) demonstrate that when the quality of the public good is

uncertain, an informed donor has an incentive to move early and signal quality to downstream

donors via the size of her gift. As a result, the downstream donor reads a larger donation as a

stronger signal of quality and increases her donation in response. In the context of our model,

the implication is that higher cumulative past giving in a shorter time span is interpreted as a

signal of quality and leads to more giving. Thus, g∗i (g−i, t) could become increasing in g−i and
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decreasing in t.

Our empirical strategy is designed to test whether pure altruism (as opposed to any of

the three above-described motives) is the dominant giving motive of crowdfunding donors and

as we show in Section 4, our empirical results support our hypotheses. Thus, while we do not

rule out the presence of any of the three above-mentioned motives, we find evidence that, at

least in the context of the DonorsChoose.org platform, pure altruism (and the resultant crowd-

out) is the main driver of giving behavior. In fact, previous studies have shown that altruism

and other motives (particularly warm-glow) can coexist (Andreoni et al., 2008).

3 Data and Empirical Strategy

3.1 Data

We use a dataset from DonorsChoose.org, an online crowdfunding platform extensively used

by public school teachers across the USA to post projects and collect funding directly from

the public.17 Since the founding of the platform in 2000, teachers at 86% of public schools

in the United States have used it to post a project and have attracted more than $1.5 billion

in donations from more than 5.5 million donors. The database of DonorsChoose.org contains

detailed data on teacher project postings and donation dates and times.

Each project posting includes a detailed list of costs and supplies that would be purchased

if the fundraising is successful, along with a written description of the project, student needs,

and the proposed use of the supplies. The project page also includes school information (such as

its location and poverty level) and a photograph of the classroom. Moreover, Donorschoose.org

staff and volunteers screen each project before it is posted publicly. Approved projects can

be browsed by anyone who visits the website. Figure A1 shows the page of a representative

project. If a project reaches its goal, DonorsChoose.org purchases the materials and ships them

directly to the teacher. Otherwise, once a project expires prior to being funded,18 donors have

the option to receive a refund, contribute to another project, or allow DonorsChoose.org to

select a project for them.

Our dataset contains detailed information on project posting by teachers (until the end of

2020), including project posted date, amount requested, and school location, as well as detailed

data on donation amount and timing (date and time). After dropping donations whose recorded

date is after the project expiration date due to a recording error,19 our final sample includes

14,735,787 donation-day observations (with 4,154,494 donors) and 2,297,177 posted projects by

17DonorsChoose.org is available to all public school teachers free of charge. Thus, teachers do not incur any

direct fundraising expenditures.
18Projects that do not reach their goal expire after four months.
19According to the representative of DonorsChoose.org, such observations are due to an error in coding the

data. Hence, we drop 215,220 observations (less than 1.5% of the total 14,735,787 donation-date observations).
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710,955 teachers from 87,256 schools. Table 1 presents summary statistics of the sample.

Table 1: Summary statistics

Mean Std. Dev. Median

First donation amount 69.02 297.19 27.80

Last donation amount 193.96 1288.84 78.40

Donation amount 81.75 294.49 28.25

Requested amount 785.19 5170.23 502.38

Day passed from the posted date 20.06 26.78 6.56

Amount donated before the posted date 2.33 128.81 0.00

Amount donated on the same date as the posted date 78.71 312.89 0.00

Number of donations 19.38 38.53 11.00

Number of funded projects 0.89 0.31 1.00

Total observations 14,735,787. Donations and requested amounts are in January $2020.

3.2 Empirical Strategy

Our goal is to test whether donors free-ride on expected future contributions in a crowdfunding

platform. Equation (10) represents our baseline empirical model to test Hypotheses 1 and 3 by

estimating the effect of time from the project posting date and accumulated past donations on

a donor’s contribution (in cases that have not reached the contribution threshold):

gipd = αmy + β1(tpd) + β2(g−ipd) + β3(g−ipd × tpd) + β4Donor−ipd + ϵipd (10)

where i and p are indexed for donor and project, and d is the donation date (as day-month-

year). gipd is the donation size relative to the amount requested by the fundraiser (hereafter,

normalised donation):

gipd =

(
Amount donatedipd
Amount requestedp

)
× 100 (11)

g−ipd is the total amount donated before donor i arrives relative to the amount requested by

the fundraiser (hereafter, normalised cumulative donations):

g−ipd =

(
Cumulative past donationsipd

Amount requestedp

)
× 100 (12)

and tpd represents the percentage of the project posting period that has passed at the time of

a particular donation (hereafter, normalised time):20

tpd =

(
donation datepd − project posted datep
expiration datep − project post datep

)
× 100 (13)

In Equation (10), the main explanatory variables are tpd and g−ipd, which are both

directly observable by the donors before they make their contribution decisions. Hence, the two

20As mentioned in Section 3.1, projects expire after four months if they are not fully funded. Hence, we create

the expiration date as four months after the posting date.
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main coefficients of interest are β1 and β2. In addition, we add the interaction term between

these two variables to control for their effect on one another. We control for the time effects

by including month-year fixed effects (αmy), and cluster the standard errors at the project

level. We also include the number of donors who contributed to a specific project up to time

t (Donor−ipd). Note that DonorsChoose.org does not reveal the amount contributed by each

previous donors to new donors. A new donor only observes the sum of past donations, project

expiration date, and the number of donors who contributed so far.

To test our two other Hypotheses 2 and 4, we estimate the effect of time from the

project posting date and accumulated past donations on the probability of a corner solution by

estimating the following model:

Iipd = αmy + β1(tpd) + β2(g−ipd) + β3(g−ipd × tpd) + β4Donor−ipd + ϵipd (14)

where Iipd is an indicator function of whether a donor contributed the full remaining amount

to complete a project, i.e., Iipd = 1gipd≥G0−g−ipd
.

Our empirical design is based on an across-project variation in our main explanatory

variables since time and cumulative past donations are correlated within a single project. Hence,

the appropriate approach is to investigate how donors behave across projects, which is why we

normalize the explanatory variables, and exclude any project fixed effects that absorb across-

project variation. We argue that there is as good as random variation in both cumulative past

donations and time across projects since the majority of donors in our dataset are one-time

donors.21 Therefore, while donors’ decision to browse DonorsChoose.org might not be random,

information on the website regarding the projects would come to them as random. In other

words, donors choose to browse the platform at a certain time, but they do not have any prior

knowledge about the amount collected thus far and the time left to expire for any of the projects.

Thus, these two variables would be exogenous to the characteristics of a potential donor. Our

identification strategy takes advantage of this plausibly exogenous variation.

We recognize that project-specific characteristics can potentially lead to a biased estimate

in the absence of a fixed-effects model. In particular, a project’s attractiveness can cause both

an increase in cumulative past donations and current donation size. However, such bias leads to

a lower estimate of the true level of crowd-out. In other words, any evidence of crowd-out in our

findings would be a lower-bound estimate. Moreover, our across-group specification precludes

the possibility of the bias of a fixed-effects estimator (Nickell bias (Nickell, 1981)).

Another potential caveat to our identification strategy is that DonorsChoose.org does

not present donors with listings randomly; rather, it sorts projects by the most urgent. That

means projects with the lowest cost to complete, the highest economic need, and the fewest

days left will appear on the main search page. We control for these criteria by constructing

an index for the likelihood of showing up on the first page, which includes an indicator for i)

21Out of 4,154,494 donors, about 71% of donors contributed one time (ever) to DonorsChoose.org platform

by the end of 2020. In addition, the majority of donors contributed only once to a project (see Figure 7).
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school poverty level, ii) projects with only 10 percent or lower time left to expiration, and iii)

projects with less than USD20 left to reach their funding target. Our first-page likelihood index

takes the value of 1 if a project satisfies all three criteria and is zero otherwise.22 Hence, we can

rewrite our baseline models as follows:

gipd = αmy + β1(tpd) + β2(g−ipd) + β3(g−ipd × tpd) + β4Donor−ipd + δ1first−pagepd + ϵipd (15)

Iipd = αmy + β1(tpd) + β2(g−ipd) + β3(g−ipd × tpd) + β4Donor−ipd + δ1first−pagepd + ϵipd (16)

where “first-page” is our first-page likelihood index representing the urgency of a project. δ is

the associated coefficient.

One more concern about the identification strategy is that teachers can potentially ad-

vertise their postings and attract donors with prior knowledge about their projects. Luckily,

DonorsChoose.org formalizes this potential and provides an opportunity for teachers to spread

the word and start pre-funding through the “Friends & Family Pre-Funding” option.23 All

pre-funding contributions are applied to the project once it is posted on the website.24 All such

contributions are observable in our dataset, and only 12,869 donations (around 0.09% of total

donation observations) are related to the pre-funding period. Thus, given their small size and

number, donations from friends and family have an insignificant impact on our results.25

4 Results

In this section, we present the empirical results of testing for crowd-out in the crowdfunding

platform DonorsChoose.org, i.e., Hypotheses 1 to 4. The binscatter plot in Figure 1 shows that

normalised donation (gi) is generally decreasing in normalized cumulative donations (g−i) which

supports Hypothesis 1.26

22In our final sample, about 76% of the observations (donation-date) include only one of these factors, less

than 6% have two of them, and only 0.08% satisfy all 3 criteria.
23This option allows private fundraising to occur before the DonorsChoose.org team reviews a project and

posts it publicly.
24For details see: https://help.donorschoose.org/hc/en-us/articles/226500648-Friends-Family-Pre-Funding
25According to Table 1, average donation contributed before the posting date of a project is just USD2.33.
26Figure A2 depicts the same relationship after excluding the first donations to all projects.
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Figure 1: Normalised donation (gi) by normalised cumulative donations (g−i)
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Note: This figure shows a nonlinear relationship of the third degree of a polynomial regression model. The sample

excludes observations that the donation amount is greater or equal to the amount left to the provision threshold.

We also explore the relationship between the proportion of observations in which the

donor contributed the full remaining amount to complete a project (mean of Ii) and the nor-

malized cumulative donations (g−i), which is presented in Figure 2. The upward slope supports

Hypothesis 2 stating that the probability of a donor contributing the full amount left (a corner

solution) is increasing in the sum of past donations.27

27Figure A3 provides the same relationship for a given point in the project posting timeline.
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Figure 2: Proportion of observations where the donor completed a project (mean of Ii) by the

normalised cumulative donations (g−i)

Note: The sample excludes the observations where normalised cumulative donations have exceeded 100.

Figure 3: Probability of project completion by normalised donations (g−i + gi)

Panel (a): 20 percent time passed (t = 20) Panel (b): 40 percent time passed (t = 40)

Panel (c): 60 percent time passed (t = 60) Panel (d): 80 percent time passed (t = 80)

Note: The sample excludes the observations where normalised cumulative donations have exceeded 100.
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In addition, we plot the relationship between a project getting fully funded before its

expiration date and the sum of normalised donations (g−i + gi) at a given time in Figure 3 to

verify that the probability function introduced in Equation 3 is strictly concave, which satisfies

the technical condition in Proposition 1.

Turning to Hypothesis 3, we present the relationship between normalised time and nor-

malised donation in Figure 4, where giving is increasing in time, which provides evidence in

support of the Hypothesis 3.

Figure 4: Normalised donation (gi) by normalised time (t)

Note: The sample excludes observations that the donation amount is greater or equal to the amount left to the

provision threshold.

Similarly, we investigate the relationship between the proportion of observations, in which

the donor contributed the full remaining amount to complete a project (mean of Ii) and the

normalised time (t) in Figure 5, where the probability of a corner solution is increasing in time

confirming Hypothesis 4.
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Figure 5: Proportion of observations where the donor completed a project (mean of Ii) by

normalised time (t)

Note: This figure shows a nonlinear relationship of the third degree of a polynomial regression model. The sample

excludes the observations where normalised cumulative donations have exceeded 100 and also donations before

the official project posted date.

To formally test our hypotheses, we estimate Equations 10 and 15 to explore the impact

of both normalised cumulative donations and normalised time on normalised donation using our

preferred sample (excluding corner solution observations). The results are presented in Table

2. Column 1 contains the result from estimating Equation 10 and shows that as the normalized

time increases by one percentage point, normalised donation increases by about 0.03 percentage

points. Furthermore, a one percentage point increase in normalised cumulative donations leads

to a reduction of 0.05 percentage points in normalised donation. These findings demonstrate

that a donor has less incentive to give with longer time left to the campaign’s expiration date

or with larger past contributions up to the time they visit the website. This result is consistent

with our Hypotheses 1 and 3 and provides evidence in support of forward-looking crowd-out.28

These results are robust after controlling for project urgency by estimating Equation 15, i.e.,

after controlling for the possibility that a project is listed on the first page (Column 2). Although

urgency does seem to have an impact on donation, the crowd-out hypotheses evidence persists.

28In Table A1, we show the results from estimating Equations 10 and 15 using all the observations in our final

sample (including corner solution observations).
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Table 2: The impact of normalised cumulative donations (g−i) and normalised time (t) on

normalised donation (gi) - preferred sample

Normalised donation (gi)

(1) (2)

Normalised time (t) 0.0270*** 0.0268***

(0.0004) (0.0004)

Normalised cumulative donations (g−i) -0.0520*** -0.0520***

(0.0020) (0.0020)

Number of donors up to t -0.0742*** -0.0742***

(0.0093) (0.0093)

(Normalised time) × (Normalised cumulative donations) -0.0005*** -0.0005***

(0.0000) (0.0000)

First page 0.8457***

(0.2324)

N 12,128,794 12,128,794

Donation-month-year FEs Yes Yes

∗p < 0.1 ∗ ∗p < 0.05 ∗ ∗ ∗ p < 0.01.

This table presents the estimation of Equation 10 (Column 1) and Equation 15 (Column 2) for our

preferred sample (dropping corner solution observations). Standard errors are in parentheses and

clustered at the project level. All the columns include donation-month-year fixed effects.

Table 3: The impact of normalised cumulative donations (g−i) and normalised time (t) on the

probability of a corner solution - final sample

Probability of

a corner solution

(1) (2)

Normalised time (t) 0.0005*** 0.0004***

(0.0000) (0.0000)

Normalised cumulative donations (g−i) 0.0045*** 0.0045***

(0.0000) (0.0000)

Number of donors up to t -0.0024*** -0.0024***

(0.0003) (0.0003)

(Normalised time) × (Normalised cumulative donations) 0.0000*** 0.0000***

(0.0000) (0.0000)

First page 0.1462***

(0.0037)

N 13,505,912 13,505,912

Donation-month-year FEs Yes Yes

∗p < 0.1 ∗ ∗p < 0.05 ∗ ∗ ∗ p < 0.01.

This table presents the estimation of Equation 14 (Column 1) and Equation 16 (Column 2) for our

final sample. Standard errors are in parentheses and clustered at the project level. All the columns

include donation-month-year fixed effects.

In Table 3, we present the results of estimating how normalised time and normalised cu-
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mulative donations impact the probability that a donor contributes the full remaining amount to

complete a project, i.e., estimating Equations 14 and 16. The probability of a donor contributing

the remaining amount needed to complete a project is increasing in both normalised cumula-

tive donations and normalised time. A one percentage point increase in normalised cumulative

donations increases the probability of a corner solution by 0.0045, and a one percentage point

increase in normalised time increases the probability of the corner solution by 0.0005. These

results support Hypotheses 2 and 4, and provide further evidence in support of our theoretical

analysis. Moreover, these findings are robust after controlling for project urgency by estimating

Equation 16 (Column 2).

5 Robustness

In this section, we investigate issues that may threaten our identification strategy. First, we

exclude the first donation to all projects as such contributions might have been made by those

familiar with the project and guided by more complicated incentives. Table 4 shows how

normalised time and normalised cumulative donations impact normalised donation and the

probability that a donor contributes the full remaining amount to complete a project (corner

solution) by estimating Equations 15 and 16, excluding the first donations received by all

projects. We find that when we drop the first donations, the evidence in support of Hypothesis

1 disappears (Column 1). However, as explained in Section 3.2, there is a potential downward

bias in estimating the impact of normalized cumulative donations, and our estimates are to

be considered as a lower bound. Moreover, one can still observe an even stronger impact of

normalised time (an estimated coefficient of 0.04 in Column 1) in support of Hypothesis 3. Thus,

the presence of forward-looking crowding-out cannot be rejected. In Column 2, we find that

our findings related to the impacts of normalised time and normalised cumulative donations on

the probability of a corner solution are robust to excluding the first donations from the sample,

which provide further support for Hypotheses 2 and 4.
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Table 4: The impact of normalised cumulative donations (g−i) and normalised time (t) - ex-

cluding the first donations

Normalised donation Probability of

(gi) a corner solution

(1) (2)

Normalised time (t) 0.0418*** 0.0008***

(0.0005) (0.0000)

Normalised cumulative donations (g−i) 0.0051** 0.0049***

(0.0019) (0.0000)

Number of donors up to t -0.0727*** -0.0023***

(0.0090) (0.0003)

(Normalised time) × (Normalised cumulative donations) -0.0008*** -0.0000*

(0.0000) (0.0000)

First page 2.5709*** 0.1352***

(0.2328) (0.0047)

N 10095930 11644585

Donation-month-year FEs Yes Yes

∗p < 0.1 ∗ ∗p < 0.05 ∗ ∗ ∗ p < 0.01.

This table presents the estimation of Equation 15 (Column 1) for our preferred sample and Equation 16 (Column 2) for

our final sample, excluding the first donation contributed to a project. Standard errors are in parentheses and clustered at

the project level. All the columns include donation-month-year fixed effects.

Table 5: The impact of normalised cumulative donations (g−i) and normalised time (t) - con-

trolling for the requested amount

Normalised donation Probability of

(gi) a corner solution

(1) (2)

Normalised time (t) 0.0270*** 0.0004***

(0.0004) (0.0000)

Normalised cumulative donations (g−i) -0.0526*** 0.0045***

(0.0020) (0.0000)

Number of donors up to t -0.0710*** -0.0024***

(0.0093) (0.0003)

(Normalised time) × (Normalised cumulative donations) -0.0005*** 0.0000***

(0.0000) (0.0000)

First page 0.8168*** 0.1445***

(0.2324) (0.0043)

Project requested amount -0.0001* 0.0000

(0.0000) (0.0000)

N 12128794 13505912

Donation-month-year FEs Yes Yes

∗p < 0.1 ∗ ∗p < 0.05 ∗ ∗ ∗ p < 0.01.

This table presents the estimation of Equation 15 (Column 1) for our preferred sample and Equation 16 (Column 2) for

our final sample, controlling for the project requested amount. Standard errors are in parentheses and clustered at the

project level. All the columns include donation-month-year fixed effects.
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Since we consider the across-project variation, one concern could be whether the results

hold after controlling for all the observable characteristics of a project. To do so, we control for

the requested amount and re-estimate Equations 15 and 16. The results in Table 5 show that the

evidence in support of our crowd-out hypotheses is robust to observable project characteristics.

In our sample, on average, projects received about 19 donations. However, we also

observe that some projects received relatively large numbers of donations. Figure 6 presents

descriptive statistics about such projects. Considering a threshold of 40 donations, we observe

that those projects with a higher frequency of contributions have had higher amounts requested.

On average, the requested amount for those projects is about 1,400 USD, which is twice the

average requested amount in our final sample (Table 1). This number is also significantly

higher than projects with a lower frequency of contributions. First, this reassures that the

higher number of visits or contributions to these projects is not related to some nonrandom

factors. Second, out of 2,297,177 posted projects, only 0.87 percent are high frequencies with

a threshold of 40 donations. Therefore, only an insignificant portion of our sample consists of

those projects. Nonetheless, we run a robustness check to ensure the results are not driven by

those projects with high frequencies in contributions. The results shown in Table 6 confirm our

previous findings.

Figure 6: Projects with high and low frequencies of contributions
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Table 6: The impact of normalised cumulative donations (g−i) and normalised time (t) - ex-

cluding projects with higher frequencies of contributions

Normalised donation Probability of

(gi) a corner solution

(1) (2)

Normalised time (t) 0.0268*** 0.0004***

(0.0004) (0.0000)

Normalised cumulative donations (g−i) -0.0520*** 0.0045***

(0.0020) (0.0000)

Number of donors up to t -0.0742*** -0.0023***

(0.0093) (0.0003)

(Normalised time) × (Normalised cumulative donations) -0.0005*** 0.0000***

(0.0000) (0.0000)

First page 0.8457*** 0.1443***

(0.2324) (0.0043)

N 10095930 11644585

Donation-month-year FEs Yes Yes

∗p < 0.1 ∗ ∗p < 0.05 ∗ ∗ ∗ p < 0.01.

This table presents the estimation of Equation 15 (Column 1) for our preferred sample and Equation 16 (Column 2) for

our final sample, excluding those projects with more than 40 contributions (defined as higher frequencies). Standard errors

are in parentheses and clustered at the project level. All the columns include donation-month-year fixed effects.

Another concern about our identification strategy is that some donors might be strategic

and contribute to a project multiple times. The incentives behind such behavior can be a

concern for our identification. Figure 7 presents how often a donor contributed to a specific

project, which shows that in 86.42% of projects, donors contributed only once, and multiple

contributions to a project by a donor do not occur very often. Moreover, our main findings are

robust to limiting the sample to those donors who contributed to a project only once (Table 7).

In the DonorsChoose.org platform, teachers ask for different resources for their classroom

projects, such as art, technology, supplies, etc. We investigate whether donors behave differ-

ently depending on the type of teachers’ requests by grouping projects into four categories:

enrichment, classroom supplies, technology, and other needs. The results are consistent with

previous findings that support our hypotheses (Table A2).

Donors from all over the United States (or outside) can donate to this platform. However,

there can be some differences between local donors and non-locals. Local donors may be more

familiar with the school or have s stronger preference to give to the classroom projects in their

geographic location. To examine whether local and non-local donors behave differently, we sep-

arate our sample by whether donations are from the same state as the school or from a different

state. Table A3 shows the impact of normalised time and normalised cumulative donations by

geographic location of the contributions. Our findings are robust to this consideration.
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Figure 7: Number of donations to a project by a donor
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It shows the frequency of contributions to a project by a donor (relative to 10,846,082 project-donor observations).

Table 7: The impact of normalised cumulative donations (g−i) and normalised time (t) - ex-

cluding donors with multiple contributions to a project

Normalised donation Probability of

(gi) a corner solution

(1) (2)

Normalised time (t) 0.0287*** 0.0007***

(0.0005) (0.0000)

Normalised cumulative donations (g−i) -0.0697*** 0.0048***

(0.0022) (0.0001)

Number of donors up to t -0.1013*** -0.0036***

(0.0126) (0.0004)

(Normalised time) × (Normalised cumulative donations) -0.0004*** 0.0000

(0.0000) (0.0000)

First page 1.6952*** 0.1422***

(0.2689) (0.0054)

N 7490512 8470530

Donation-month-year FEs Yes Yes

∗p < 0.1 ∗ ∗p < 0.05 ∗ ∗ ∗ p < 0.01.

This table presents the estimation of Equation 15 (Column 1) for our preferred sample and Equation 16 (Column 2) for

our final sample, excluding those donors with multiple contributions to a project. Standard errors are in parentheses and

clustered at the project level. All the columns include donation-month-year fixed effects.
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6 Conclusion

We develop a simple theoretical model of donor behavior in charitable crowdfunding and demon-

strate a forward-looking form of crowding-out behavior. Based on our theoretical analysis, we

hypothesize that all else equal, a donor’s contributions decrease with accumulated past donations

and increase with time elapsed since the start of the fundraising. We use a rich crowdfunding

database from DonorsChoose.org to empirically test our hypotheses. We find evidence con-

sistent with our hypotheses of crowd-out behavior. Our results are robust to adding various

controls and specifications. The only exception is that excluding the first donations renders the

impact of past cumulative donations less significant, which is due to a downward bias inherent

in that estimate, making it a lower bound.

The intuition behind our findings is that in a dynamic sequential-move threshold pub-

lic goods game, a donor can infer the probability that subsequent donors provide the public

good from past contributions and time, and the higher that probability, the higher the free-

riding incentives. Consequently, donors exhibit a forward-looking crowd-out behavior within a

dynamic contribution framework, where they free-ride on anticipated future donations. Our re-

sults shed light on donor behavior in dynamic contribution settings and offer insights for charity

practitioners and fundraising strategists.

The literature on this topic is relatively recent, indicating a need for further investigation.

One of the limitations of our work is that on the theory front, we only present a partial equilib-

rium model that focuses on donor behavior. While our model does provide a formal argument

for our hypotheses, we believe that future theoretical work should expand on our model and

fully characterize the equilibrium of the crowdfunding game. The results could provide further

intuition for our empirical findings. On the empirical side, our research is based on data from

one specific crowdfunding platform. There are other dynamic fundraising and crowdfunding

platforms that exhibit unique features, which may influence free-riding and crowding-out be-

haviors. Thus, there is a need for further research to examine how specific crowdfunding designs

impact donor behavior and the level of crowd-out. Additionally, our dataset lacks information

on donor characteristics due to confidentiality restrictions. Future research is needed to ex-

plore heterogeneity in giving behaviors, especially based on donors’ demographics, in dynamic

fundraising contexts.
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A Appendix

Figure A1: Sample of DonorsChoose.org Requested Project
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Figure A2: Normalised donation (gi) by normalised cumulative donation (g−i)

Note: This figure shows a nonlinear relationship of the third degree of a polynomial regression model. The sample

excludes observations that the donation amount is greater or equal to the amount left to the provision threshold

and the first donations to the projects.

Figure A3: Proportion of observations where the donor completed a project (mean of Ii) by the

normalised cumulative donations (g−i) at a given time

Panel (a): 20 percent time passed (t = 20) Panel (b): 40 percent time passed (t = 40)

Panel (c): 60 percent time passed (t = 60) Panel (d): 80 percent time passed (t = 80)

Note: The sample excludes the observations where normalised cumulative donations have exceeded 100.

32



Table A1: The impact of normalised cumulative donations (g−i) and normalised time (t) on

normalised donation (gi) - final sample

Normalised donation (gi)

(1) (2)

Normalised time (t) 0.1473*** 0.1471***

(0.0062) (0.0063)

Normalised cumulative donations (g−i) -0.0481*** -0.0481***

(0.0040) (0.0040)

Number of donors up to t -0.1265*** -0.1265***

(0.0163) (0.0163)

(Normalised time) × (Normalised cumulative donations) -0.0016*** -0.0015***

(0.0001) (0.0001)

First page 0.8897

(0.6134)

N 14735786 14735786

Donation-month-year FEs Yes Yes

∗p < 0.1 ∗ ∗p < 0.05 ∗ ∗ ∗ p < 0.01.

This table presents the estimation of Equation 10 (Column 1) and Equation 15 (Column 2) for our

final sample. Standard errors are in parentheses and clustered at the project level. All the columns

include donation-month-year fixed effects.

Table A2: The impact of normalised cumulative donations (g−i) and normalised time (t) by

project resource types

Normalised donation (gi) Probability of a corner solution

Resource Type Enrichment Supplies Technology Others Enrichment Supplies Technology Others

(1) (2) (3) (4) (5) (6) (7) (8)

Normalised time (t) 0.0375*** 0.0200*** 0.0284*** 0.0211*** 0.0004* 0.0004*** 0.0004*** 0.0005***

(0.0014) (0.0013) (0.0006) (0.0007) (0.0002) (0.0000) (0.0000) (0.0000)

Normalised cumulative donations (g−i) -0.0611*** -0.0476*** -0.0548*** -0.0376*** 0.0042*** 0.0046*** 0.0048*** 0.0042***

(0.0037) (0.0030) (0.0017) (0.0016) (0.0001) (0.0001) (0.0000) (0.0000)

Number of donors up to t -0.0421*** -0.0953*** -0.0921*** -0.0838*** -0.0014*** -0.0029*** -0.0029*** -0.0027***

(0.0124) (0.0192) (0.0099) (0.0074) (0.0004) (0.0005) (0.0003) (0.0002)

(Normalised time) × (Normalised cumulative donations) -0.0006*** -0.0004*** -0.0005*** -0.0004*** 0.0000 0.0000*** 0.0000*** 0.0000***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

First page -0.5914 1.1645 0.5586 1.6221*** 0.1705*** 0.1300*** 0.1514*** 0.1256***

(0.7484) (0.7224) (0.3241) (0.4293) (0.0202) (0.0112) (0.0053) (0.0065)

N 1714555 1184130 5855834 3374025 1903075 1315658 6591156 3695754

Donation-month-year FEs Yes Yes Yes Yes Yes Yes Yes Yes

∗p < 0.1 ∗ ∗p < 0.05 ∗ ∗ ∗ p < 0.01.

This table presents the estimation of Equation 15 (Column 1) for our preferred sample and Equation 16 (Column 2) for our final sample, by resource types requested by teachers. Standard errors

are in parentheses and clustered at the project level. All the columns include donation-month-year fixed effects.

33



Table A3: The impact of normalised cumulative donations (g−i) and normalised time (t) by

geographic location

Normalised donation (gi) Probability of a corner solution

Same state Different state Same state Different state

(1) (2) (3) (4)

Normalised time (t) 0.0297*** 0.0004*** 0.0400*** 0.0008***

(0.0006) (0.0001) (0.0007) (0.0000)

Normalised cumulative donations (g−i) -0.0503*** 0.0035*** -0.0265*** 0.0054***

(0.0014) (0.0000) (0.0025) (0.0001)

Number of donors up to t -0.0930*** -0.0023*** -0.0601*** -0.0025***

(0.0082) (0.0002) (0.0096) (0.0004)

(Normalised time) × (Normalised cumulative donations) -0.0005*** 0.0000** -0.0008*** 0.0000

(0.0000) (0.0000) (0.0000) (0.0000)

First page 0.9926** 0.1194*** 0.5551 0.1385***

(0.3582) (0.0072) (0.3565) (0.0060)

N 5026445 5390147 4735628 5567586

Donation-month-year FEs Yes Yes Yes Yes

∗p < 0.1 ∗ ∗p < 0.05 ∗ ∗ ∗ p < 0.01.

This table presents the estimation of Equation 15 (Column 1) for our preferred sample and Equation 16 (Column 2) for our final sample, based on

donation geographic locations. Standard errors are in parentheses and clustered at the project level. All the columns include donation-month-year

fixed effects.
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